

CLIMAVER A1 APTA

Conductos Autoportantes CLIMAVER

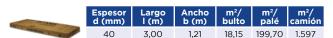
Panel rígido de Lana de Vidrio ISOVER con excelente reacción al fuego, ya que no contribuye al incendio en ninguna fase del mismo. Es un panel de alta densidad, revestido por la cara exterior con una lámina de aluminio reforzada con malla de vidrio, que actúa como barrera de vapor, y por su cara interior, con un tejido neto de vidrio reforzado de color negro de gran resistencia mecánica. Por sus excelentes prestaciones en cuanto a aislamiento térmico y acústico, CLIMAVER A1 APTA es la mejor solución de conducto autoportante existente en el mercado, ya que es capaz de satisfacer los más altos requisitos de reacción al fuego, para la instalación de redes de conductos autoportantes de distribución de aire en las instalaciones térmicas de Climatización de los edificios.

RITE Propiedades técnicas

Símbolo	Parámetro	Icono	Unidades	Valor	Norma
λ _D	Conductividad termica declarada en función de la temperatura		W/m·K (°C)	0,032 (10) 0,033 (20) 0,036 (40) 0,039 (60)	EN 12667 EN 12939
-	Reacción al fuego	Ø I	Euroclase	A1	EN 13501-1 EN 15715
MU	Resistencia a la difusión de vapor de agua de la lana mineral, µ		-	1	EN 12086
Z	Resistencia a la difusión de vapor de vapor de agua del revestimiento		m²•h•Pa/ mg	> 140	EN 12086
MV	Espesor de la capa de aire equivalente a la difusión del vapor de agua, Sd		m	100	EN 12086
DS	Estabilidad dimensional Δε		%	< 1	EN 1604
-	Estanquidad		Clase	D	UNE-EN 13403 EN 12237
-	Resistencia a la presión	(2)	Pa	800	UNE-EN 13403

Condiciones de trabajo: velocidad de aire de hasta 18~m/s y temperatura de aire de circulación de hasta 90°C .

Espesor d (mm)	Coeficiente ponderado de absorción acústica, AW, $lpha_\omega$	Clase de absorción acústica	(1)	Código de designación
EN 823	EN ISO 354 EN ISO 11654	UNE EN ISO 11654		EN 14303
40	0,90(1)	А		MW-EN 14303-T5-MV1


Ensavos acústicos con plénum: CTA 140003/REV.

Coefficiente ponderado de absorción acústica AW, α_a sin plenum 0,70 (40mm espesor) CTA 140053/REV-2 y α_w sin plenum 0,90 (50mm espesor) CTA 140045/REV-2.

<u> </u>	Frecuencia (Hz)							
	125	250	500	1000	2000	4000		
Espesor d, mm	Coeficiente práctico de absorción acústica, αρ EN ISO 354 / EN ISO 11654							
40	0,40	0,70	0,85	0,85	0,90	1,00		
Sección.	Atenuación acústica, en un tramo recto, ∆L (DB/m)*							
S mm ²	Atenu	ación acús	stica, en u	n tramo re	cto, ∆L (D	B/m)*		
	Atenu 5,82	ación acús 12,75	16,73	n tramo re 16,73	ecto, ∆L (D 18,12	B/m)* 21,00		
S mm²								

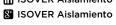
*Estimación mediante la fórmula: $\Delta L = 1,05 \cdot \alpha_p^{1,4} \cdot \frac{P}{S}$, (P = perímetro) para potencia sonora de un ventilador con un caudal de 20000 m³/h, pérdida de carga 15mm ca.

Presentación

Ventajas

- Excelente reacción al fuego.
- · Elevados rendimientos térmicos.
- Máxima clase de estanqueidad definida por el RITE
- Óptima calidad del ambiente acústico
- Resistencia a métodos de limpieza más agresivos. UNE 100012.
- Exclusivo marcado de líneas guía para corte por MTR.
- Instalación más fácil y rápida. Máxima eficiencia en obra.
- · Continuidad en las uniones gracias al exclusivo machihembrado de los paneles.
- No proliferación de mohos y bacterias, EN 13403.
- · Producto sostenible. 100% reciclable. Material reciclado > 50%.

Certificados


Consultar Manual de Montaje de conductos CLIMAVER. Información adicional disponible en: www.isover.es

ISOVERaislamiento

ISOVERes

☑ @ISOVERes **f** ISOVERaislamiento ISOVER Aislamiento

