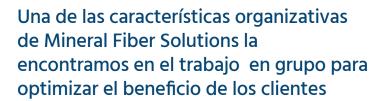


PERLI WOOL

GAMA DE MORTEROS PERLIWOOL®


ÍNDICE

1. SOBRE MINERAL FIBER SOLUTIONS	4
2. PERLIWOOL®	6
3. PROTECCIÓN PASIVA CONTRA INCENDIOS	8
3.1. Protección de elementos con capacidad portante	10
3.1.a Estructura metálica	10
3.1.b Estructura de hormigón	24
3.1.c Estructura de madera	29
3.2. Protección de elementos sin capacidad portante	30
3.2.a Sectorización Vertical EI-180	30
3.2.b Encuentro medianera cubierta protegida con franja recubierta (cortafuegos) El-60	31
3.2.c Encuentro medianera cubierta protegida con franja recubierta (cortafuegos) El-90	32
3.2.d Encuentro medianera cubierta protegida con franja recubierta (cortafuegos) El-120	33
4. AISLAMIENTO TÉRMICO	35
5. ABSORCIÓN ACÚSTICA	36
6. CONTROL DE CONDENSACIÓN DE AGUA	41
7. ACABADOS PERLIWOOL®	42

SOBRE MINERAL FIBER SOLUTIONS

Mineral Fiber Solutions se ha especializado en la producción y suministro de productos para el sector de la protección pasiva contra incendios y el aislamiento en edificación. Desde el inicio de su actividad, **Mineral Fiber Solutions** se ha centrado en una política de mejora continua. Es por esta razón que la empresa ha realizado un gran esfuerzo e inversión en investigación, desarrollo e innovación, colaborando con las principales entidades y laboratorios certificadores.

Desde **Mineral Fiber Solutions** ponemos a su disposición una gran diversidad de productos y servicios, que van desde productos para la protección contra incendios, aislamiento térmico, aislamiento acústico, recambios y accesorios de maquinaria hasta servicios como el asesoramiento técnico, servicio post-venta, etc...

El cliente tiene a su disposición un gabinete técnico, formado por técnicos e ingenieros, con la finalidad de solucionar cualquier aspecto en el que **Mineral Fiber Solutions** tenga la especialización necesaria.

SOBRE MINERAL FIBER SOLUTIONS

NUESTRAS MARCAS

PERLIWOOL®

PERLIWOOL® es un nuevo concepto en morteros proyectados en base seca, compuesto de lana mineral y perlita con cemento como único ligante hidráulico, utilizado principalmente para la protección contra incendios de elementos constructivos.

PERLIWOOL®, además de ser un producto especialmente concebido para la protección contra incendios, tiene grandes propiedades para el aislamiento térmico y acústico.

PERLIWOOL® evita también la condensación de agua.

PERLIWOOL® no contiene en su composición yeso, escayola ni cal, así como no incorpora ningún componente tóxico.

PERLIWOOL® una vez aplicado tiene un aspecto rugoso y una textura monolítica. Si se desease por motivos decorativos, es posible conseguir acabados diferentes realizando un ligero alisado con talocha o rodillo, así como la aplicación de una capa de pintura adecuada para conseguir tonalidades diferentes.

Su aplicación se realiza directamente por proyección neumática, con máquina de proyección mediante vía seca, sobre los elementos a proteger. Esto, junto a su buena adherencia, hace que el recubrimiento se adapte perfectamente al elemento a proteger sin presentar grietas ni fisuras, generándose una capa continua, elástica y sin uniones.

Debido a su pequeño tamaño de grano y a la ausencia de imperfecciones en la mezcla (pequeñas piedras que provienen de la lana mineral), **PERLIWOOL**® puede utilizarse en máquinas de proyectar sin triturador previo o con el mayor tamaño de paso abierto. Así se consigue una proyección más rápida y eficaz.

2 -> PERLIWOOL®

CARACTERÍSTICAS TÉCNICAS

- Protege al Acero de los Efectos de la corrosión . (Ph básico: 12).
- No contiene yeso, escayola, ni cal. No incorpora ningún componente tóxico, elemento patógeno, carece de asbestos.
- Sus características físicas evitan la condensación.
- Densidad: 300 Kg/m³.
- Reacción al fuego: A1.
- Resistencia flexotracción: 0,4 N/mm².
- Resistencia compresión: 0,4 N/mm².
- Coeficiente de conductividad térmica: 0,078 W/mhk.
- Adherencia del material: 0,019 N / mm².
- Absorción Acústica (30 mm): SAA = 0,89

NRC = 0.90

 α_W = 0,80 (H) Clase B

• Absorción Acústica (50 mm): SAA = 0,97

NRC = 1,00

 α_W = 1,00 (H) Clase A

- Reducción sonora ponderada: 48,6 dBA.*
- Presentación: Sacos de 25 kg.
- Espesor práctico mínimo: 10 mm.
- Tipo de curado: Mediante secado.
- Fraguado inicial: de 12 a 24 horas según condiciones ambientales y humedad.
- Soportes típicos: Estructuras de acero, chapas metálicas galvanizadas, mallas metálicas expandidas, hormigón, ladrillo, fibro cemento, etc.
- Ensayadas gran cantidad de soluciones en laboratorio acreditado.

^{*} Valores in situ para una pared compuesta por ladrillo cerámico de 12,5 cm más proyectado mortero PERLIWOOL® de 50 mm de espesor medic

Como resultado de las propiedades técnicas que tiene PERLIWOOL®, este producto tiene gran variedad de aplicaciones. Todas ellas han sido certificadas mediante ensayos de resistencia al fuego realizados por laboratorio acreditado.

EUROCLASES: REACCIÓN Y RESISTENCIA AL FUEGO

Las euroclases clasifica los productos de construcción y elementos constructivos según la reacción y la resistencia al fuego. La reacción al fuego es la respuesta de un material al fuego medida en términos de su contribución al desarrollo del mismo con su propia combustión. **PERLIWOOL***, según el punto 1.2 del Real Decreto 842/2013, se considera un producto de clase A1 de reacción al fuego sin necesidad de ensayo. Eso significa que **PERLIWOOL*** es un producto no combustible y sin contribución al fuego. La resistencia al fuego nos indica la capacidad de un elemento de construcción para mantener durante un periodo de tiempo determinado la función portante que le sea exigible, así como la integridad y/o el aislamiento térmico. Las euroclases de resistencia al fuego principales son:

- **R** Nos indica la capacidad portante o de soportar cargas que tiene un elemento constructivo ante la acción del fuego. <u>La capacidad portante se requiere exclusivamente para vigas y pilares con soporte de cargas y sin función de compartimentación de incendios.</u>
- **E** Nos indica la integridad al paso de llamas y gases calientes del elemento constructivo durante la acción del fuego sobre el mismo.
- I Nos indica el aislamiento térmico que tiene el mortero ignífugo. <u>Esta nomenclatura en combinación con la nomenclatura E (El) se exige para paredes, techos y sellados sin capacidad portante donde se requiere de una función de compartimentación de incendios. Si se combina con R y E (REI) se utiliza para muros y forjados con capacidad portante donde se requiere una función de compartimentación de incendios.</u>

Ya sea R, El o REI, serán acompañados siempre por un tiempo requerido "t". De esta forma obtendremos R(t), El(t) o REI(t). El Reglamento de seguridad contra incendios en los establecimientos industriales (RSCIEI) y el Código Técnico de la Edificación (CTE) son los elementos que regulan cuales son aquellos elementos a proteger de la acción del fuego y cuales son las exigencias mínimas en cuanto a reacción y resistencia al fuego de los mismos.

Cuando un sistema constructivo no alcanza los requisitos mínimos exigidos por el RSCIEI o el CTE este debe de recubrirse con mortero ignífugo **PERLIWOOL**® para alcanzar dichos requisitos. Para cada caso en particular deberemos de aplicar aquel espesor indicado en el ensayo y que pasamos a detallar en este dossier.

PROTECCIÓN PASIVA CONTRA INCENDIOS TABLA RESUMEN DE ENSAYOS

DESCRIPCIÓN DEL ENSAYO	Nº DE INFORME TÉCNICO/LABORATORIO ACREDITADO	NORMA DE ENSAYO	ESPESOR PERLIWOOL [®] REQUERIDO	CLASIFICACIÓN OBTENIDA EN EL ENSAYO
ESTRUCTURA METÁLICA	18/15079-496 M2 / APPLUS	UNE - ENV 13381-4	SEGÚN MASIVIDAD DEL PERFIL ESTRUCTURAL. TABLA 1.1.	DE R - 30 A R - 240
ESTRUCTURA DE HORMIGÓN - ELEMENTOS DELIMITADORES DE HORMIGÓN	09/32300329 / APPLUS	UNE - ENV 13381-3	ENSAYO GLOBAL Y TABLA DE ESPESORES EQUIVALENTES. TABLA 2.1.	DE REI 30 A REI 240
ESTRUCTURA DE HORMIGÓN - ELEMENTOS DELIMITADORES DE HORMIGÓN	17/15079-2364 / APPLUS	UNE - ENV 13381-3	ENSAYO GLOBAL Y TABLA DE ESPESORES EQUIVALENTES. TABLA 2.2.	DE REI 30 A REI 240
ESTRUCTURA DE HORMIGÓN - VIGAS Y PILARES	09/32300328 / APPLUS	UNE - ENV 13381-3	ENSAYO GLOBAL Y TABLA DE ESPESORES EQUIVALENTES. TABLA 2.3.	DE R 30 A R 240
ESTRUCTURA MIXTA	19/19582-1987 / APPLUS	UNE - EN 13381-5	ENSAYO GLOBAL Y TABLAS DE ESPESORES EQUIVALENTES TABLA 2.4. Y TABLA 2.5	DE R 30 A R180 Y ESPESOR EQUIVALENTE EI
ESTRUCTURA DE MADERA	19/19582-836 / APPLUS	FprEN 13381-7	38 mm	β_2 (mm/min) = 0,4
SECTORIZACIÓN VERTICAL EI-180	16/12863-1708 / APPLUS	UNE - EN 13501-2 + A1	57 mm	El 180
ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS CON MALLA NERVADA)	16/10606-697 / APPLUS	UNE - EN 1363-1 / PROTOCOLO RSCIEI	30 mm	EI 60
ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS CON MALLA NERVADA)	16/10606-697 / APPLUS	UNE - EN 1363-1 / PROTOCOLO RSCIEI	33 mm	El 90
ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS CON MALLA NERVADA)	15/10329-2308 / APPLUS	UNE - EN 1363-1 / PROTOCOLO RSCIEI	56,8 mm	EI 120

3.1→

PROTECCIÓN PASIVA CONTRA INCENDIOS

PROTECCIÓN DE ELEMENTOS CON CAPACIDAD PORTANTE

3.1.a ESTRUCTURA METÁLICA

Las estructuras metálicas protegidas con **PERLIWOOL**® han sido evaluadas para periodos determinados en laboratorios acreditados. Como resultado de la evaluación y valoración realizada, se obtiene una tabla de clasificación de la resistencia al fuego de una estructura de acero laminado, en función de las siguientes características de ésta:

- Masividad del perfil a proteger: este concepto relaciona la superficie expuesta al fuego con la sección del perfil, dependiendo del tipo de perfil a proteger las masividades estarán comprendidas entre 50 m⁻¹ y 340 m⁻¹.
- Espesor de la protección: que dependerá de la resistencia al fuego exigible al perfil.
- Temperatura crítica evaluada: al alcanzar esta temperatura el acero empieza a perder sus propiedades mecánicas resistentes (500 °C).
- Posición y exposición de los perfiles: que dependerá de la función del perfil (vigas o pilares) y de la posible exposición al fuego (total o parcialmente).

APLICACIÓN SOBRE EL SOPORTE A PROTEGER

Se proyectará directamente **PERLIWOOL**® sobre la superficie a proteger utilizando máquina neumática de proyección mediante vía seca hasta conseguir el espesor requerido.

Sólo es necesaria la utilización de promotores o elementos mecánicos para la mejora de adherencia en aquellos casos en que el perfil a proteger tenga suciedad extrema, grasa, aceites, restos de pintura, etc. y que no se puedan limpiar con facilidad.

Ensayo base para la protección contra incendios de:

ESTRUCTURAS METÁLICAS

Ensayo nº. 18/15079-496 M2

LABORATORIO ACREDITADO:

NORMA UTILIZADA:

UNE ENV 13381-4

ESPESOR REQUERIDO:

Mirar tabla 1.1

Ensayo base para la protección pasiva contra incendios de:

ESTRUCTURAS METÁLICAS. VIGAS Y PILARES

Apto para las instalaciones reguladas por:

REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN LOS ESTABLECIMIENTOS INDUSTRIALES (RSCIEI).

CÓDIGO TÉCNICO DE LA EDIFICACIÓN (CTE).

TABLA PARA 500°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS A 4 CARAS

Masividad				Esp	esor (m	nm)			
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min
70	19	19	19	19	19	22	31	39	-
80	19	19	19	19	19	26	34	42	-
90	19	19	19	19	20	28	36	44	-
100	19	19	19	19	22	30	38	45	-
110	19	19	19	19	24	31	39	47	-
120	19	19	19	19	25	33	40	48	-
130	19	19	19	19	26	34	41	48	-
140	19	19	19	20	27	35	42	49	-
150	19	19	19	21	28	35	42	50	-
160	19	19	19	21	29	36	43	50	-
170	19	19	19	22	29	36	44	51	-
180	19	19	19	23	30	37	44	-	-
190	19	19	20	23	30	37	44	-	-
200	19	19	20	24	31	38	45	-	-
210	19	19	20	24	31	38	45	-	-
220	19	19	21	24	31	38	45	-	-
230	19	19	21	25	32	39	45	-	-
240	19	19	21	25	32	39	46	-	-
250	19	19	22	25	32	39	46	-	-
260	19	19	22	25	32	39	46	-	-
270	19	19	22	26	32	39	46	-	-
280	19	19	22	26	33	40	46	-	-
290	19	19	23	26	33	40	47	-	-
300	19	19	23	26	33	40	47	-	-
310	19	19	23	26	33	40	47	-	-
320	19	20	23	26	33	40	47	-	-
330	19	20	23	27	33	40	47	-	-

Tabla 1.1.

TABLA PARA 350°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS A 4 CARAS

Masividad	Espesor (mm)									
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min	
70	19	19	19	19	23	34	44	-	-	
80	19	19	19	19	26	36	46	-	-	
90	19	19	19	19	28	38	47	-	-	
100	19	19	19	21	30	39	48	-	-	
110	19	19	19	22	31	40	49	-	-	
120	19	19	19	23	32	41	49	-	-	
130	19	19	20	24	33	41	50	-	-	
140	19	19	21	25	33	42	50	-	-	
150	19	19	21	26	34	42	50	-	-	
160	19	19	22	26	34	42	51	-	-	
170	19	19	23	27	35	43	51	-	-	
180	19	19	23	27	35	43	51	-	-	
190	19	19	23	27	35	43	-	-	-	
200	19	20	24	28	36	43	-	-	-	
210	19	20	24	28	36	44	-	-	-	
220	19	20	24	28	36	44	-	-	-	
230	19	21	25	28	36	44	-	-	-	
240	19	21	25	29	36	44	-	-	-	
250	19	21	25	29	37	44	-	-	-	
260	19	21	25	29	37	44	-	-	-	
270	19	22	25	29	37	44	-	-	-	
280	19	22	26	29	37	45	-	-	-	
290	19	22	26	29	37	45	-	-	-	
300	19	22	26	30	37	45	-	-	-	
310	19	22	26	30	37	45	-	-	-	
320	19	22	26	30	37	45	-	-	-	
330	19	22	26	30	37	45	-	-	-	

TABLA PARA 400°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS A 4 CARAS

Masividad	Espesor (mm)										
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min		
70	19	19	19	19	20	29	39	49	-		
80	19	19	19	19	23	32	41	50	-		
90	19	19	19	19	25	34	43	-	-		
100	19	19	19	19	27	36	44	-	-		
110	19	19	19	20	28	37	45	-	-		
120	19	19	19	21	29	38	46	-	-		
130	19	19	19	22	30	38	47	-	-		
140	19	19	19	23	31	39	47	-	-		
150	19	19	20	24	32	40	47	-	-		
160	19	19	21	24	32	40	48	-	-		
170	19	19	21	25	33	40	48	-	-		
180	19	19	22	25	33	41	48	-	-		
190	19	19	22	26	33	41	49	-	-		
200	19	19	22	26	34	41	49	-	-		
210	19	19	23	27	34	42	49	-	-		
220	19	19	23	27	34	42	49	-	-		
230	19	20	23	27	35	42	49	-	-		
240	19	20	24	27	35	42	50	-	-		
250	19	20	24	28	35	42	50	-	-		
260	19	20	24	28	35	42	50	-	-		
270	19	21	24	28	35	43	50	-	-		
280	19	21	24	28	35	43	50	-	-		
290	19	21	25	28	36	43	50	-	-		
300	19	21	25	28	36	43	50	-	-		
310	19	21	25	29	36	43	50	-	-		
320	19	21	25	29	36	43	50	-	-		
330	19	22	25	29	36	43	51	-	-		

Tabla 1.2. Tabla 1.3.

TABLA PARA 450°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS A 4 CARAS

Masividad				Esp	esor (m	nm)			
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min
70	19	19	19	19	19	26	34	43	-
80	19	19	19	19	20	29	37	46	-
90	19	19	19	19	23	31	39	48	-
100	19	19	19	19	25	33	41	49	-
110	19	19	19	19	26	34	42	50	-
120	19	19	19	19	27	35	43	51	-
130	19	19	19	21	28	36	44	-	-
140	19	19	19	21	29	37	44	-	-
150	19	19	19	22	30	37	45	-	-
160	19	19	19	23	30	38	45	-	-
170	19	19	20	23	31	38	46	-	-
180	19	19	20	24	31	39	46	-	-
190	19	19	21	24	32	39	46	-	-
200	19	19	21	25	32	39	47	-	-
210	19	19	22	25	32	40	47	-	-
220	19	19	22	25	33	40	47	-	-
230	19	19	22	26	33	40	47	-	-
240	19	19	22	26	33	40	48	-	-
250	19	19	23	26	33	41	48	-	-
260	19	19	23	26	34	41	48	-	-
270	19	20	23	27	34	41	48	-	-
280	19	20	23	27	34	41	48	-	-
290	19	20	24	27	34	41	48	-	-
300	19	20	24	27	34	41	48	-	-
310	19	20	24	27	34	42	49	-	-
320	19	20	24	28	35	42	49	-	-
330	19	21	24	28	35	42	49	-	-

TABLA PARA 550°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS A 4 CARAS

Masividad	Espesor (mm)										
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min		
70	19	19	19	19	19	19	27	35	-		
80	19	19	19	19	19	23	31	38	-		
90	19	19	19	19	19	26	33	40	-		
100	19	19	19	19	20	28	35	42	-		
110	19	19	19	19	22	29	36	44	-		
120	19	19	19	19	23	30	38	45	-		
130	19	19	19	19	25	32	39	46	-		
140	19	19	19	19	25	32	40	47	-		
150	19	19	19	19	26	33	40	47	-		
160	19	19	19	20	27	34	41	48	-		
170	19	19	19	21	28	35	41	48	-		
180	19	19	19	21	28	35	42	49	-		
190	19	19	19	22	29	36	42	49	-		
200	19	19	19	22	29	36	43	50	-		
210	19	19	19	23	29	36	43	50	-		
220	19	19	20	23	30	37	43	50	-		
230	19	19	20	23	30	37	44	50	-		
240	19	19	20	24	30	37	44	51	-		
250	19	19	21	24	31	37	44	51	-		
260	19	19	21	24	31	38	44	-	-		
270	19	19	21	25	31	38	45	-	-		
280	19	19	21	25	31	38	45	-	-		
290	19	19	22	25	32	38	45	-	-		
300	19	19	22	25	32	38	45	-	-		
310	19	19	22	25	32	39	45	-	-		
320	19	19	22	25	32	39	45	-	-		
330	19	19	22	26	32	39	46	-	-		

Tabla 1.4. Tabla 1.5.

TABLA PARA 350°C (S. UNE EN 13381-4) PARA VIGAS A 3 CARAS

Masividad	Espesor (mm)										
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min		
70	20	20	20	20	23	34	44	-	-		
80	20	20	20	20	26	36	46	-	-		
90	20	20	20	20	28	38	47	-	-		
100	20	20	20	21	30	39	48	-	-		
110	20	20	20	22	31	40	49	-	-		
120	20	20	20	23	32	41	49	-	-		
130	20	20	20	24	33	41	50	-	-		
140	20	20	21	25	33	42	50	-	-		
150	20	20	21	26	34	42	50	-	-		
160	20	20	22	26	34	42	51	-	-		
170	20	20	23	27	35	43	51	-	-		
180	20	20	23	27	35	43	51	-	-		
190	20	20	23	27	35	43	51	-	-		
200	20	20	24	28	36	43	51	-	-		
210	20	20	24	28	36	44	51	-	-		
220	20	20	24	28	36	44	52	-	-		
230	20	21	25	28	36	44	52	-	-		
240	20	21	25	29	36	44	52	-	-		
250	20	21	25	29	37	44	52	-	-		
260	20	21	25	29	37	44	52	-	-		
270	20	22	25	29	37	44	52	-	-		
280	20	22	26	29	37	45	52	-	-		
290	20	22	26	29	37	45	52	-	-		
300	20	22	26	30	37	45	52	-	-		
310	20	22	26	30	37	45	52	-	-		
320	20	22	26	30	37	45	52	-	-		
330	20	22	26	30	37	45	52	-	-		

TABLA PARA 400°C (S. UNE EN 13381-4) PARA VIGAS A 3 CARAS

Masividad	Espesor (mm)										
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min		
70	20	20	20	20	20	29	39	49	-		
80	20	20	20	20	23	32	41	50	-		
90	20	20	20	20	25	34	43	52	-		
100	20	20	20	20	27	36	44	53	-		
110	20	20	20	20	28	37	45	-	-		
120	20	20	20	21	29	38	46	-	-		
130	20	20	20	22	30	38	47	-	-		
140	20	20	20	23	31	39	47	-	-		
150	20	20	20	24	32	40	47	-	-		
160	20	20	21	24	32	40	48	-	-		
170	20	20	21	25	33	40	48	-	-		
180	20	20	22	25	33	41	48	-	-		
190	20	20	22	26	33	41	49	-	-		
200	20	20	22	26	34	41	49	-	-		
210	20	20	23	27	34	42	49	-	-		
220	20	20	23	27	34	42	49	-	-		
230	20	20	23	27	35	42	49	-	-		
240	20	20	24	27	35	42	50	-	-		
250	20	20	24	28	35	42	50	-	-		
260	20	20	24	28	35	42	50	-	-		
270	20	21	24	28	35	43	50	-	-		
280	20	21	24	28	35	43	50	-	-		
290	20	21	25	28	36	43	50	-	-		
300	20	21	25	28	36	43	50	-	-		
310	20	21	25	29	36	43	50	-	-		
320	20	21	25	29	36	43	50	-	-		
330	20	22	25	29	36	43	51				

Tabla 1.6. Tabla 1.7.

TABLA PARA 450°C (S. UNE EN 13381-4) PARA VIGAS A 3 CARAS

Masividad				Esp	esor (m	nm)			
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min
70	20	20	20	20	20	26	34	43	-
80	20	20	20	20	20	29	37	46	-
90	20	20	20	20	23	31	39	48	-
100	20	20	20	20	25	33	41	49	-
110	20	20	20	20	26	34	42	50	-
120	20	20	20	20	27	35	43	51	-
130	20	20	20	21	28	36	44	51	-
140	20	20	20	21	29	37	44	52	-
150	20	20	20	22	30	37	45	52	-
160	20	20	20	23	30	38	45	53	-
170	20	20	20	23	31	38	46	-	-
180	20	20	20	24	31	39	46	-	-
190	20	20	21	24	32	39	46	-	-
200	20	20	21	25	32	39	47	-	-
210	20	20	22	25	32	40	47	-	-
220	20	20	22	25	33	40	47	-	-
230	20	20	22	26	33	40	47	-	-
240	20	20	22	26	33	40	48	-	-
250	20	20	23	26	33	41	48	-	-
260	20	20	23	26	34	41	48	-	-
270	20	20	23	27	34	41	48	-	-
280	20	20	23	27	34	41	48	-	-
290	20	20	24	27	34	41	48	-	-
300	20	20	24	27	34	41	48	-	-
310	20	20	24	27	34	42	49	-	-
320	20	20	24	28	35	42	49	-	-
330	20	21	24	28	35	42	49	-	-

TABLA PARA 500°C (S. UNE EN 13381-4) PARA VIGAS A 3 CARAS

Masividad				Esp	esor (m	nm)			
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min
70	20	20	20	20	20	22	31	39	-
80	20	20	20	20	20	26	34	42	
90	20	20	20	20	20	28	36	44	-
100	20	20	20	20	22	30	38	45	-
110	20	20	20	20	24	31	39	47	-
120	20	20	20	20	25	33	40	48	-
130	20	20	20	20	26	34	41	48	
140	20	20	20	20	27	35	42	49	-
150	20	20	20	21	28	35	42	50	
160	20	20	20	21	29	36	43	50	-
170	20	20	20	22	29	36	44	51	
180	20	20	20	23	30	37	44	51	-
190	20	20	20	23	30	37	44	51	-
200	20	20	20	24	31	38	45	52	-
210	20	20	20	24	31	38	45	52	-
220	20	20	21	24	31	38	45	52	-
230	20	20	21	25	32	39	45	52	-
240	20	20	21	25	32	39	46	53	-
250	20	20	22	25	32	39	46	53	-
260	20	20	22	25	32	39	46	-	-
270	20	20	22	26	32	39	46	-	-
280	20	20	22	26	33	40	46	-	-
290	20	20	23	26	33	40	47	-	-
300	20	20	23	26	33	40	47	-	-
310	20	20	23	26	33	40	47	-	-
320	20	20	23	26	33	40	47	-	-
330	20	20	23	27	33	40	47	-	-

Tabla 1.8.

Tabla 1.9.

TABLA PARA 550°C (S. UNE EN 13381-4) PARA VIGAS A 3 CARAS

Masividad				Esp	esor (m	nm)			
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min
70	20	20	20	20	20	20	27	35	-
80	20	20	20	20	20	23	31	38	-
90	20	20	20	20	20	26	33	40	-
100	20	20	20	20	20	28	35	42	-
110	20	20	20	20	22	29	36	44	-
120	20	20	20	20	23	30	38	45	-
130	20	20	20	20	25	32	39	46	-
140	20	20	20	20	25	32	40	47	-
150	20	20	20	20	26	33	40	47	-
160	20	20	20	20	27	34	41	48	-
170	20	20	20	21	28	35	41	48	-
180	20	20	20	21	28	35	42	49	-
190	20	20	20	22	29	36	42	49	-
200	20	20	20	22	29	36	43	50	-
210	20	20	20	23	29	36	43	50	-
220	20	20	20	23	30	37	43	50	-
230	20	20	20	23	30	37	44	50	-
240	20	20	20	24	30	37	44	51	-
250	20	20	21	24	31	37	44	51	-
260	20	20	21	24	31	38	44	51	-
270	20	20	21	25	31	38	45	51	-
280	20	20	21	25	31	38	45	51	-
290	20	20	22	25	32	38	45	52	-
300	20	20	22	25	32	38	45	52	-
310	20	20	22	25	32	39	45	52	-
320	20	20	22	25	32	39	45	52	-
330	20	20	22	26	32	39	46	52	-

Tabla 1.10.

Ensayo base para la protección pasiva contra incendios de:

ESTRUCTURAS METÁLICAS. VIGAS Y PILARES

Apto para las instalaciones reguladas por:

REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN LOS ESTABLECIMIENTOS INDUSTRIALES (RSCIEI).

CÓDIGO TÉCNICO DE LA EDIFICACIÓN (CTE).

TABLA PARA 350°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS SHS A 4 CARAS

Masividad	Espesor (mm)										
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min		
70	20	20	20	20	25	36	47	-	-		
80	21	21	21	21	28	39	50	-	-		
90	21	21	21	21	31	41	51	-	-		
100	21	21	21	23	33	43	-	-	-		
110	21	21	21	25	34	44	-	-	-		
120	21	21	21	26	36	45	-	-	-		
130	21	21	23	27	37	47	-	-	-		
140	22	22	24	28	38	47	-	-	-		
150	22	22	25	29	39	48	-	-	-		
160	22	22	26	30	40	49	-	-	-		
170	22	22	26	31	41	50	-	-	-		
180	22	22	27	32	41	51	-	-	-		
190	23	23	28	33	42	51	-	-	-		
200	23	24	29	33	43	-	-	-	-		
210	23	24	29	34	43	-	-	-	-		
220	23	25	30	34	44	-	-	-	-		
230	23	25	30	35	45	-	-	-	-		
240	24	26	31	36	45	-	-	-	-		
250	24	26	31	36	46	-	-	-	-		
260	24	27	32	36	46	-	-	-	-		
270	24	27	32	36	46	-	-	-	-		
280	24	27	32	37	46	-	-	-	-		
290	24	27	32	37	46	-	-	-	-		
300	24	28	32	37	46	-	-	-	-		
310	24	28	32	37	47	-	-	-	-		
320	24	28	33	37	47	-	-	-	-		
330	24	28	33	37	47	-	-	-	-		

Tabla 1.11.

TABLA PARA 400°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS SHS A 4 CARAS

Masividad	Espesor (mm)											
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min			
70	20	20	20	20	21	31	42	-	-			
80	21	21	21	21	25	35	45	-	-			
90	21	21	21	21	28	37	47	-	-			
100	21	21	21	21	30	39	49	-	-			
110	21	21	21	22	32	41	50	-	-			
120	21	21	21	24	33	42	51	-	-			
130	21	21	21	25	34	43	-	-	-			
140	22	22	22	26	35	45	-	-	-			
150	22	22	23	27	36	46	-	-	-			
160	22	22	24	28	37	46	-	-	-			
170	22	22	25	29	38	47	-	-	-			
180	22	22	25	30	39	48	-	-	-			
190	23	23	26	31	40	49	-	-	-			
200	23	23	27	31	41	50	-	-	-			
210	23	23	28	32	41	50	-	-	-			
220	23	24	28	33	42	51	-	-	-			
230	23	24	29	33	42	-	-	-	-			
240	24	25	29	34	43	-	-	-	-			
250	24	25	30	34	44	-	-	-	-			
260	24	25	30	35	44	-	-	-	-			
270	24	26	30	35	44	-	-	-	-			
280	24	26	31	35	44	-	-	-	-			
290	24	26	31	35	44	-	-	-	-			
300	24	26	31	35	45	-	-	-	-			
310	24	27	31	36	45	-	-	-	-			
320	24	27	31	36	45	-	-	-	-			
330	24	27	31	36	45	-	-	-	-			

TABLA PARA 450°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS SHS A 4 CARAS

Masividad	Espesor (mm)											
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min			
70	20	20	20	20	20	27	37	46	-			
80	21	21	21	21	22	31	40	49	-			
90	21	21	21	21	25	34	43	-	-			
100	21	21	21	21	27	36	45	-	-			
110	21	21	21	21	29	38	47	-	-			
120	21	21	21	22	31	39	48	-	-			
130	21	21	21	23	32	41	49	-	-			
140	22	22	22	24	33	42	51	-	-			
150	22	22	22	26	34	43	-	-	-			
160	22	22	22	27	35	44	-	-	-			
170	22	22	23	27	36	45	-	-	-			
180	22	22	24	28	37	46	-	-	-			
190	23	23	25	29	38	47	-	-	-			
200	23	23	25	30	39	47	-	-	-			
210	23	23	26	30	39	48	-	-	-			
220	23	23	27	31	40	49	-	-	-			
230	23	23	27	32	41	49	-	-	-			
240	24	24	28	32	41	50	-	-	-			
250	24	24	28	33	42	51	-	-	-			
260	24	24	29	33	42	51	-	-	-			
270	24	24	29	33	42	51	-	-	-			
280	24	25	29	34	42	51	-	-	-			
290	24	25	29	34	43	-	-	-	-			
300	24	25	30	34	43	-	-	-	-			
310	24	25	30	34	43	-	-	-	-			
320	24	26	30	34	43	-	-	-	-			
330	24	26	30	35	43	-	-	-	-			

Tabla 1.12. Tabla 1.13.

TABLA PARA 500°C (S. UNE EN 13381-4) PARA PILARES Y VIGAS SHS A 4 CARAS

Masividad	Espesor (mm)										
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min		
70	20	20	20	20	20	24	33	42	-		
80	21	21	21	21	21	28	36	45	-		
90	21	21	21	21	22	31	39	48	-		
100	21	21	21	21	25	33	41	50	-		
110	21	21	21	21	27	35	43	-	-		
120	21	21	21	21	28	37	45	-	-		
130	21	21	21	21	30	38	46	-	-		
140	22	22	22	23	31	39	48	-	-		
150	22	22	22	24	32	40	49		-		
160	22	22	22	25	33	42	50	-	-		
170	22	22	22	26	34	43	51	-	-		
180	22	22	22	27	35	43	-	-	-		
190	23	23	23	27	36	44	-	-	-		
200	23	23	24	28	37	45	-	-	-		
210	23	23	25	29	37	46	-	-	-		
220	23	23	25	30	38	47	-	-	-		
230	23	23	26	30	39	47	-	-	-		
240	24	24	26	31	39	48	-	-	-		
250	24	24	27	31	40	49	-	-	-		
260	24	24	27	32	40	49	-	-	-		
270	24	24	28	32	41	49	-	-	-		
280	24	24	28	32	41	49	-	-	-		
290	24	24	28	32	41	50	-	-	-		
300	24	24	28	33	41	50	-	-	-		
310	24	24	29	33	41	50	-	-	-		
320	24	25	29	33	42	50	-	-	-		
330	24	25	29	33	42	50	-	-	-		

TABLA PARA 550° (S. UNE EN 13381-4) PARA PILARES Y VIGAS SHS A 4 CARAS

Masividad	Espesor (mm)									
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min	
70	20	20	20	20	20	21	29	37	-	
80	21	21	21	21	21	25	33	41	-	
90	21	21	21	21	21	28	36	44	-	
100	21	21	21	21	22	30	38	46	-	
110	21	21	21	21	24	32	40	48	-	
120	21	21	21	21	26	34	42	50	-	
130	21	21	21	21	28	36	44	-	-	
140	22	22	22	22	29	37	45	-	-	
150	22	22	22	22	30	38	46	-	-	
160	22	22	22	23	31	39	47	-	-	
170	22	22	22	24	32	40	48	-	-	
180	22	22	22	25	33	41	49	-	-	
190	23	23	23	26	34	42	50	-	-	
200	23	23	23	27	35	43	51	-	-	
210	23	23	23	27	36	44	-	-	-	
220	23	23	24	28	36	45	-	-	-	
230	23	23	25	29	37	45	-	-	-	
240	24	24	25	29	38	46	-	-	-	
250	24	24	26	30	38	47	-	-	-	
260	24	24	26	30	39	47	-	-	-	
270	24	24	26	31	39	47	-	-	-	
280	24	24	27	31	39	48	-	-	-	
290	24	24	27	31	40	48	-	-	-	
300	24	24	27	31	40	48	-	-	-	
310	24	24	27	32	40	48	-	-	-	
320	24	24	28	32	40	48	-	-	-	
330	24	24	28	32	40	49	-	-	-	

Tabla 1.14. Tabla 1.15.

VIGAS SHS A 3 CARAS

Masividad	Espesor (mm)										
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min		
70	21	21	21	21	25	36	47	-	-		
80	22	22	22	22	28	39	50	-	-		
90	22	22	22	22	31	41	51	-	-		
100	22	22	22	23	33	43	53	-	-		
110	22	22	22	25	34	44	-	-	-		
120	22	22	22	26	36	45	-	-	-		
130	23	23	23	27	37	47	-	-	-		
140	23	23	24	28	38	47	-	-	-		
150	23	23	25	29	39	48	-	-	-		
160	23	23	26	30	40	49	-	-	-		
170	23	23	26	31	41	50	-	-	-		
180	24	24	27	32	41	51	-	-	-		
190	24	24	28	33	42	51	-	-	-		
200	24	24	29	33	43	52	-	-	-		
210	24	24	29	34	43	53	-	-	-		
220	24	25	30	34	44	53	-	-	-		
230	25	25	30	35	45	-	-	-	-		
240	25	26	31	36	45	-	-	-	-		
250	25	26	31	36	46	-	-	-	-		
260	25	27	32	36	46	-	-	-	-		
270	25	27	32	36	46	-	-	-	-		
280	25	27	32	37	46	-	-	-	-		
290	25	27	32	37	46	-	-	-	-		
300	25	28	32	37	46	-	-	-	-		
310	25	28	32	37	47	-	-	-	-		
320	25	28	33	37	47	-	-	-	-		
330	25	28	33	37	47	-	-	-	-		

TABLA PARA 350°C (S. UNE EN 13381-4) PARA TABLA PARA 400°C (S. UNE EN 13381-4) PARA **VIGAS SHS A 3 CARAS**

Masividad	Espesor (mm)											
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min			
70	21	21	21	21	21	31	42	52	-			
80	22	22	22	22	25	35	45	-	-			
90	22	22	22	22	28	37	47	-	-			
100	22	22	22	22	30	39	49	-	-			
110	22	22	22	22	32	41	50	-	-			
120	22	22	22	24	33	42	51	-	-			
130	23	23	23	25	34	43	53	-	-			
140	23	23	23	26	35	45	-	-	-			
150	23	23	23	27	36	46	-	-	-			
160	23	23	24	28	37	46	-	-	-			
170	23	23	25	29	38	47	-	-	-			
180	24	24	25	30	39	48	-	-	-			
190	24	24	26	31	40	49	-	-	-			
200	24	24	27	31	41	50	-	-	-			
210	24	24	28	32	41	50	-	-	-			
220	24	24	28	33	42	51	-	-	-			
230	25	25	29	33	42	52	-	-	-			
240	25	25	29	34	43	52	-	-	-			
250	25	25	30	34	44	53	-	-	-			
260	25	25	30	35	44	53	-	-	-			
270	25	26	30	35	44	53	-	-	-			
280	25	26	31	35	44	53	-	-	-			
290	25	26	31	35	44	-	-	-	-			
300	25	26	31	35	45	-	-	-	-			
310	25	27	31	36	45	-	-	-	-			
320	25	27	31	36	45	-	-	-	-			
330	25	27	31	36	45	-	-	-	-			

Tabla 1.16. Tabla 1.17.

VIGAS SHS A 3 CARAS

Masividad	Espesor (mm)										
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min		
70	21	21	21	21	21	27	37	46	-		
80	22	22	22	22	22	31	40	49	-		
90	22	22	22	22	25	34	43	52	-		
100	22	22	22	22	27	36	45	-	-		
110	22	22	22	22	29	38	47	-	-		
120	22	22	22	22	31	39	48	-	-		
130	23	23	23	23	32	41	49	-	-		
140	23	23	23	24	33	42	51	-	-		
150	23	23	23	26	34	43	52	-	-		
160	23	23	23	27	35	44	53	-	-		
170	23	23	23	27	36	45	-	-	-		
180	24	24	24	28	37	46	-	-	-		
190	24	24	25	29	38	47	-	-	-		
200	24	24	25	30	39	47	-	-	-		
210	24	24	26	30	39	48	-	-	-		
220	24	24	27	31	40	49	-	-	-		
230	25	25	27	32	41	49	-	-	-		
240	25	25	28	32	41	50	-	-	-		
250	25	25	28	33	42	51	-	-	-		
260	25	25	29	33	42	51	-	-	-		
270	25	25	29	33	42	51	-	-	-		
280	25	25	29	34	42	51	-	-	-		
290	25	25	29	34	43	52	-	-	-		
300	25	25	30	34	43	52	-	-	-		
310	25	25	30	34	43	52	-	-	-		
320	25	26	30	34	43	52	-	-	-		
330	25	26	30	35	43	52	-	-	-		

TABLA PARA 450°C (S. UNE EN 13381-4) PARA TABLA PARA 500°C (S. UNE EN 13381-4) PARA **VIGAS SHS A 3 CARAS**

Masividad	Espesor (mm)									
m ⁻¹	15 min	30 min	45 min	60 min	90 min	, 120 min	150 min	180 min	240 min	
70	21	21	21	21	21	24	33	42	-	
80	22	22	22	22	22	28	36	45	-	
90	22	22	22	22	22	31	39	48	-	
100	22	22	22	22	25	33	41	50	-	
110	22	22	22	22	27	35	43	52	-	
120	22	22	22	22	28	37	45	53	-	
130	23	23	23	23	30	38	46	-	-	
	23	23	23	23	31	39	48	-	-	
150	23	23	23	24	32	40	49	-	-	
160	23	23	23	25	33	42	50	-	-	
170	23	23	23	26	34	43	51			
180	24	24	24	27	35	43	52	-	-	
190	24	24	24	27	36	44	53	-	-	
200	24	24	24	28	37	45	-	-	-	
210	24	24	25	29	37	46	-	-	-	
220	24	24	25	30	38	47	-	-	-	
230	25	25	26	30	39	47	-	-	-	
240	25	25	26	31	39	48	-	-	-	
250	25	25	27	31	40	49	-	-	-	
260	25	25	27	32	40	49	-	-	-	
270	25	25	28	32	41	49	-	-	-	
280	25	25	28	32	41	49	-	-	-	
290	25	25	28	32	41	50	-	-	-	
300	25	25	28	33	41	50	-	-	-	
310	25	25	29	33	41	50	-	-	-	
320	25	25	29	33	42	50	-	-	-	
330	25	25	29	33	42	50	-	-	-	

Tabla 1.18. Tabla 1.19.

TABLA PARA 550°C (S. UNE EN 13381-4) PARA VIGAS SHS A 3 CARAS

Masividad	Espesor (mm)											
m ⁻¹	15 min	30 min	45 min	60 min	90 min	120 min	150 min	180 min	240 min			
70	21	21	21	21	21	21	29	37	-			
80	22	22	22	22	22	25	33	41	-			
90	22	22	22	22	22	28	36	44	-			
100	22	22	22	22	22	30	38	46	-			
110	22	22	22	22	24	32	40	48	-			
120	22	22	22	22	26	34	42	50	-			
130	23	23	23	23	28	36	44	52	-			
140	23	23	23	23	29	37	45	53	-			
150	23	23	23	23	30	38	46	-	-			
160	23	23	23	23	31	39	47	-	-			
170	23	23	23	24	32	40	48	-	-			
180	24	24	24	25	33	41	49	-	-			
190	24	24	24	26	34	42	50	-	-			
200	24	24	24	27	35	43	51	-	-			
210	24	24	24	27	36	44	52	-	-			
220	24	24	24	28	36	45	53	-	-			
230	25	25	25	29	37	45	-	-	-			
240	25	25	25	29	38	46	-	-	-			
250	25	25	26	30	38	47	-	-	-			
260	25	25	26	30	39	47	-	-	-			
270	25	25	26	31	39	47	-	-	-			
280	25	25	27	31	39	48	-	-	-			
290	25	25	27	31	40	48	-	-	-			
300	25	25	27	31	40	48	-	-	-			
310	25	25	27	32	40	48	-	-	-			
320	25	25	28	32	40	48	-	-	-			
330	25	25	28	32	40	49	-	-	-			

Tabla 1.20.

	Capa continua sin elementos de unión	Gran adaptabilidad a las diferentes formas de los elementos a tratar	Aislante térmico	Absorvente acústico	Resistencia al fuego	Reacción al fuego tipo A1. No combustible sin contribución al fuego	Ayuda a evitar condensaciones superficiales	Totalmente reciclable	Ayuda al ahorro energético y a la reducción de emisiones de CO ₂	Duradero en el tiempo. Fabricado con productos no orgánicos
PERLI WOOL	Ø	Ø	0	•	Ø	•	Ø	•	Ø	Ø
PERLI WOOL TERMIC	•	Ø	•	•		•	•	•	②	②

3.1 →

PROTECCIÓN PASIVA CONTRA INCENDIOS

PROTECCIÓN DE ELEMENTOS CON CAPACIDAD PORTANTE

3.1.b ESTRUCTURA DE HORMIGÓN

Las estructuras de hormigón protegidas con **PERLIWOOL**® han sido evaluadas para periodos determinados en laboratorios acreditados.

El Código Técnico de la Edificación en el Documento Básico de seguridad en caso de incendio (DB - SI) sección SI 6: Resistencia al fuego de la estructura y en el anejo SI C: Resistencia al fuego de las estructuras de hormigón armado, nos guía e indica cuales son los requisitos mínimos en cuanto a resistencia al fuego de las estructuras de hormigón.

En estos apartados se indica para cada Resistencia al fuego R, El o REI cual es el espesor mínimo de hormigón y la distancia mínima del eje de la armadura con la cara expuesta al fuego.

Para aquellos casos en que el elemento delimitador, la viga o el pilar de hormigón no tengan el espesor mínimo requerido ni la distancia mínima del eje de la armadura con la cara expuesta al fuego, pueden protegerse estos elementos con mortero ignífugo **PERLIWOOL**® y utilizar las diferentes tablas de espesor equivalente.

El espesor equivalente se suma al espesor real y a la distancia mínima real del eje de la armadura con la cara expuesta al fuego para cumplir con el objetivo de resistencia al fuego requerido.

Ensayo base para la protección pasiva contra incendios de:

ESTRUCTURA DE HORMIGÓN ARMADO: MUROS, LOSAS MACIZAS, FORJADOS BIDIRECCIONALES, FORJADOS UNIDIRECCIONALES, VIGAS Y PILARES.

Apto para las instalaciones reguladas por:

REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN LOS ESTABLECIMIENTOS INDUSTRIALES (RSCIEI).

	Ensayo nº. 09/32300329	Ensayo n ^o 17/15079-2364	Ensayo nº. 09/32300328	Ensayo n ^o 19/19582-1987
LABORATORIO ACREDITADO:	APPLUS	APPLUS	APPLUS	APPLUS
NORMA UTILIZADA:	UNE ENV 13381-3	UNE EN 13381-3	UNE ENV 13381-3	UNE ENV 13381-5
ESPESOR REQUERIDO:	Mirar tabla 2.1	Mirar tabla 2.2	Mirar tabla 2.3	Mirar tabla 2.4 y 2.5

TABLA DE ESPESORES DE HORMIGÓN EQUIVALENTE PARA LOSA DE HORMIGÓN. ENSAYO Nº 09/32300329*

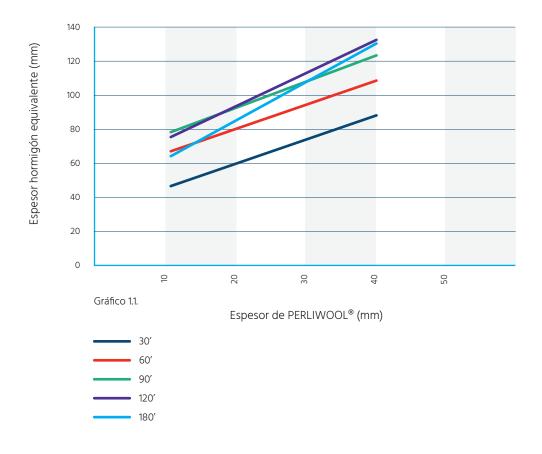
ESPESOR DE PERLIWOO L°	Espesor hormigón equivalente (mm)							
ESPESOR DE PERLIWOOL	30′	60′	90′	120′	180′	240′		
10'9 mm	68	74	87	96	93	89		

Tabla 2.1.

TABLA DE ESPESORES DE HORMIGÓN EQUIVALENTE PARA LOSA DE HORMIGÓN. ENSAYO Nº 17/15079-2364

30' 60' 90' 120' 180' 240'	ECDECOD DE DED LIM OO L®	Espesor hormigón equivalente (mm)							
15 707	ESPESOR DE PERLIWOOL ®	30′	60′	90′	120′	180′	240′		
15 mm 53 64 69 /0 6/ 61	15 mm	53	64	69	70	67	61		

Tabla 2.2.


TABLA DE ESPESORES DE HORMIGÓN EQUIVALENTE PARA VIGAS Y PILARES DE HORMIGÓN. ENSAYO Nº 09/32300328

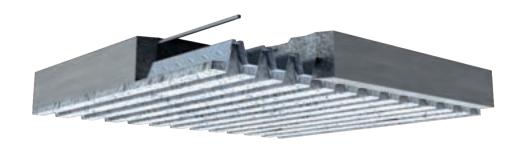
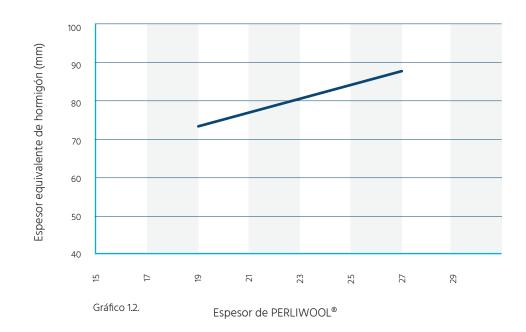

ESPESOR DE PERLIWOOL °	Espesor hormigón equivalente (mm)						
ESPESOR DE PERLIWOOL	30′	60′	90′	120′	180′	240′	
11 mm	48	67	76	75	65	-	
40 mm	90	110	122	132	130	128	

Tabla 2.3.

^{*} Es necesaria la instalación de malla metálica nervada de 0,3 mm de espesor.

GRÁFICO DE ESPESOR DE HORMIGÓN EQUIVALENTE - ESPESOR DE PERLIWOOL®

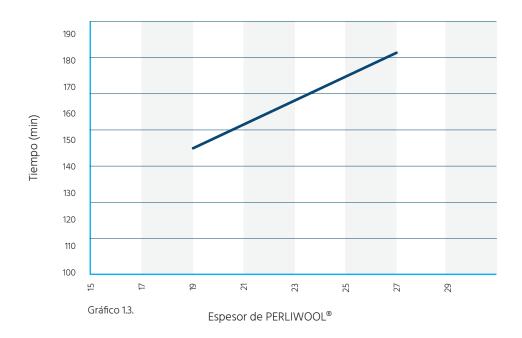


ESTRUCTURA MIXTA. TABLA DE ESPESORES DE HORMIGÓN EQUIVALENTE PARA CAPA DE COMPRESIÓN DE HORMIGÓN DEL FORJADO MIXTO. ENSAYO Nº 19/19582-1987

ESPESOR DE PERLIWOOL®	Espesor hormigón equivalente (mm)
19 mm	72
27 mm	88

Tabla 2.4.

GRÁFICO ESPESOR EQUIVALENTE - ESPESOR DE PERLIWOOL®



CAPACIDAD PORTANTE. TEMPERATURA DE LA CHAPA DE ACERO PERFILADA (TIEMPO HASTA ALCANZAR 350 °C)

ESPESOR DE PERLIWOOL °	Tiempo para T característica 350 ºC (min)
19 mm	145
27 mm	181

Tabla 2.5.

GRÁFICO TIEMPO PARA AUMENTAR T CARACTERÍSTICA HASTA 350 °C - ESPESOR DE PERLIWOOL®

APLICACIÓN SOBRE EL SOPORTE A PROTEGER

Se proyectará directamente **PERLIWOOL**® sobre la superficie a proteger, utilizando máquina neumática de proyección mediante vía seca hasta conseguir el espesor requerido.

Sólo es necesaria la utilización de promotores o elementos mecánicos para la mejora de adherencia en aquellos casos en que la superficie a proteger tenga suciedad extrema, grasa, aceites, restos de pintura, etc. y que no se puedan limpiar con facilidad.

3.1 →

PROTECCIÓN PASIVA CONTRA INCENDIOS

PROTECCIÓN DE ELEMENTOS CON CAPACIDAD PORTANTE

3.1.c ESTRUCTURA DE MADERA

Las estructuras de maderas protegidas con **PERLIWOOL**® han sido evaluadas para periodos determinados en laboratorios acreditados. Se realizó ensayo en APPLUS para determinar la contribución de la resistencia al fuego de miembros estructurales de madera de acuerdo a la norma de ensayo FprEN 13381-7. En el ensayo realizado se obtuvo que la velocidad de carbonización de la madera protegida con 38 mm de mortero **PERLIWOOL®** era igual a 0,4 mm/min. El ensayo se dio por finalizado después de 152 minutos sin que se produjera fallo del sistema de protección al fuego ni por falta de adherencia ni por temperatura máxima registrada.

El Código Técnico de la Edificación, en el Documento Básico de seguridad en caso de incendio (DB - SI) sección SI 6: Resistencia al fuego de la estructura, anejo SI E: Resistencia al fuego de las estructuras de madera, nos guía e indica cuales son los requisitos mínimos en cuanto a resistencia al fuego de las estructuras de madera. Es importante tener en cuenta que la comprobación de la capacidad portante de un elemento estructural de madera se realiza en los métodos establecidos en el DB SE-M del Código Técnico de la Edificación.

APLICACIÓN SOBRE EL SOPORTE A PROTEGER

Previamente al proyectado del mortero **PERLIWOOL®**, debe de recubrirse la madera con una malla metálica de tripe torsión. Posteriormente se proyectará directamente sobre la misma el mortero **PERLIWOOL®** utilizando máquina neumática de proyección mediante vía seca hasta conseguir el espesor requerido.

Ensayo base para la protección pasiva contra incendios de:

ESTRUCTURAS DE MADERA

Apto para las instalaciones reguladas por:

REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN LOS ESTABLECIMIENTOS INDUSTRIALES (RSCIEI).

	Ensayo nº. 19/19582-836
LABORATORIO ACREDITADO:	APPLUS
NORMA UTILIZADA:	FprEN 13381-7
ESPESOR MEDIO REQUERIDO:	38 mm
RESISTENCIA AL FUEGO:	β_2 (mm/min) = 0,4


3.2 >

PROTECCIÓN PASIVA CONTRA INCENDIOS

PROTECCIÓN DE ELEMENTOS SIN CAPACIDAD PORTANTE

3.2.a SECTORIZACIÓN VERTICAL EI-180

Se realizó ensayo en APPLUS para la obtención de la resistencia al fuego de una división vertical de 3000 x 3000 mm, compuesta por una chapa grecada de acero galvanizado recubierta con mortero **PERLIWOOL®**. La protección se realizó con un espesor medio de 57 mm. El resultado obtenido fue un El 180 minutos y el ensayo se realizó según la norma UNE-EN 13501-2 + A1.

APLICACIÓN SOBRE EL SOPORTE A PROTEGER

Se proyectará directamente **PERLIWOOL®** sobre la chapa grecada de acero galvanizado fijada ésta a montantes de 45 x 35 x 0,6 mm modulados cada 600 mm. Los montantes están fijados a su vez a canales de 48 x 30 x 0,55 mm.

Sólo es necesaria la utilización de promotores o elementos mecánicos para la mejora de adherencia en aquellos casos en que la chapa grecada de acero galvanizado a proteger tenga una fijación insuficiente que no evite el cimbreo, grasa, aceites, restos de pintura, etc. y que no se pueda limpiar con facilidad.

Ensayo base para la protección pasiva contra incendios de:

SECTORIZACIÓN VERTICAL EI-180

Apto para las instalaciones reguladas por:

REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN LOS ESTABLECIMIENTOS INDUSTRIALES (RSCIEI)

	Ensayo n ^o . 16/12863-1708
LABORATORIO ACREDITADO:	APPLUS
NORMA UTILIZADA:	UNE-EN 13501-2 + A1
ESPESOR MEDIO REQUERIDO:	57 mm
RESISTENCIA AL FUEGO:	EI-180

PROTECCIÓN DE ELEMENTOS SIN CAPACIDAD PORTANTE

3.2.b ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS) EI-60

Se realizó ensayo en APPLUS para la obtención de la resistencia al fuego de un encuentro de medianera con cubierta mediante la instalación de una franja recubierta con mortero **PERLIWOOL®**. La protección se realizó con un espesor de 30 mm. El resultado obtenido fue un El 60 minutos y el ensayo se realizó según la norma UNE - EN: 1363-1 y la guía de aplicación: RSCIEI. Anexo B. Edición Octubre 2007.

APLICACIÓN SOBRE EL SOPORTE A PROTEGER

Se proyectará directamente **PERLIWOOL**® sobre malla nervada de 0,3 mm de espesor, adherida a los ángulos mediante tres maestras omegas de 80, utilizando máquina neumática de proyección mediante vía seca hasta conseguir el espesor requerido. Los ángulos deben de ir anclados en la medianera. La franja debe de cumplir con los requisitos exigidos en el Reglamento de Seguridad contra Incendios en los establecimientos industriales (RSCIEI).

Ensayo base para la protección pasiva contra incendios de:

ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS), INCLINACIÓN 25°

Apto para las instalaciones reguladas por:

REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN LOS ESTABLECIMIENTOS INDUSTRIALES (RSCIEI)

	Ensayo nº. 16/10606-697
LABORATORIO ACREDITADO:	APPLUS
NORMA UTILIZADA:	UNE-EN 1363-1 Y RSCIEI
GUÍA DE APLICACIÓN (RSCIEI):	Anexo B. Edición Octubre 2007
ESPESOR REQUERIDO:	30 mm
RESISTENCIA AL FUEGO:	EI-60

PROTECCIÓN DE ELEMENTOS SIN CAPACIDAD PORTANTE

3.2.c ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS) EI-90

Se realizó ensayo en APPLUS para la obtención de la resistencia al fuego de un encuentro de medianera con cubierta mediante la instalación de una franja recubierta con mortero **PERLIWOOL®**. La protección se realizó con un espesor de 33 mm. El resultado obtenido fue un El 90 minutos y el ensayo se realizó según la norma UNE - EN: 1363-1 y la guía de aplicación: RSCIEI. Anexo B. Edición Octubre 2007.

APLICACIÓN SOBRE EL SOPORTE A PROTEGER

Se proyectará directamente **PERLIWOOL®** sobre malla nervada de 0,3 mm de espesor, adherida a los ángulos mediante tres maestras omegas de 80, utilizando máquina neumática de proyección mediante vía seca hasta conseguir el espesor requerido. Los ángulos deben de ir anclados en la medianera. La franja debe de cumplir con los requisitos exigidos en el Reglamento de Seguridad contra Incendios en los establecimientos industriales (RSCIEI).

Ensayo base para la protección pasiva contra incendios de:

ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS), INCLINACIÓN 0°

Apto para las instalaciones reguladas por:

REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN LOS ESTABLECIMIENTOS INDUSTRIALES (RSCIEI)

	Ensayo nº. 16/10606-697
LABORATORIO ACREDITADO:	APPLUS
NORMA UTILIZADA:	UNE-EN 1363-1 Y RSCIEI
GUÍA DE APLICACIÓN (RSCIEI):	Anexo B. Edición Octubre 2007
ESPESOR REQUERIDO:	33 mm
RESISTENCIA AL FUEGO:	EI-90

PROTECCIÓN DE ELEMENTOS SIN CAPACIDAD PORTANTE

3.2.d ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS) EI-120

Se realizó ensayo en APPLUS para la obtención de la resistencia al fuego de un encuentro de medianera con cubierta mediante la instalación de una franja recubierta con mortero **PERLIWOOL®**. La protección se realizó con un espesor de 56,8 mm. El resultado obtenido fue un El 120 minutos y el ensayo se realizó según la norma UNE - EN: 1363-1 y la guía de aplicación: RSCIEI. Anexo B. Edición Octubre 2007.

APLICACIÓN SOBRE EL SOPORTE A PROTEGER

Se proyectará directamente **PERLIWOOL®** sobre malla nervada de 0,3 mm de espesor, adherida a los ángulos mediante tres maestras omegas de 80, utilizando máquina neumática de proyección mediante vía seca hasta conseguir el espesor requerido. Los ángulos deben de ir anclados en la medianera. La franja debe de cumplir con los requisitos exigidos en el Reglamento de Seguridad contra Incendios en los establecimientos industriales (RSCIEI).

Ensayo base para la protección pasiva contra incendios de:

ENCUENTRO MEDIANERA CUBIERTA PROTEGIDA CON FRANJA RECUBIERTA (CORTAFUEGOS), INCLINACIÓN 25°

Apto para las instalaciones reguladas por:

REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN LOS ESTABLECIMIENTOS INDUSTRIALES (RSCIEI)

	Ensayo n ^o . 15/10329-2308
LABORATORIO ACREDITADO:	APPLUS
NORMA UTILIZADA:	UNE-EN 1363-1 Y RSCIEI
GUÍA DE APLICACIÓN (RSCIEI):	Anexo B. Edición Octubre 2007
ESPESOR REQUERIDO:	56,8 mm
RESISTENCIA AL FUEGO:	EI-120

PERLIWOOL®, MÁS QUE UN MORTERO IGNÍFUGO

- **PERLIWOOL®** aporta una protección contra la acción del fuego demostrada con un gran número de ensayos de resistencia al fuego los cuales simulan diversas situaciones de incendio.
- **PERLIWOOL®** tiene una reacción al fuego del tipo A1, es decir, es un producto no combustible el cual no contribuye al fuego.
- **PERLIWOOL®** mantiene sus propiedades durante un largo periodo de tiempo ya que está fabricado con productos naturales no orgánicos.
- **PERLIWOOL®** es un gran aislante térmico, ayudando al ahorro energético y a la reducción de las emisiones de CO₂.
- **PERLIWOOL®** es reciclable incluso después de ser aplicado.
- **PERLIWOOL**® es respetuoso con el medio ambiente, además **PERLIWOOL**® no tiene desperdicios de fabricación, reciclándose el 100 % del material sobrante.
- **PERLIWOOL®** es un potente absorbente acústico, ayudando a regularizar las reverberaciones (ecos) así como los altos niveles de presión del sonido ambiental en una estancia.
- **PERLIWOOL®** ayuda a controlar la condensación de agua.

AISLAMIENTO TÉRMICO

PERLIWOOL® es un producto con grandes propiedades físicas que ayudan a incrementar el aislamiento térmico de aquellas zonas donde se aplica.

Dado que es un producto proyectado, éste forma una capa continua evitándose de esta forma los puentes térmicos de difícil solución con otros sistemas.

Con **PERLIWOOL**® será más sencillo conseguir los objetivos de ahorro energético marcados en las diferentes normativas. De este modo podrá reducir la factura de climatización consiguiendo una estancia segura y confortable.

Aplique más cantidad de **PERLIWOOL**® e incremente el Aislamiento térmico además de conseguir la resistencia al fuego deseada.

λ PERLIWOOL®: 0,078 W / m·K
RESISTENCIA Y TRANSMITANCIA TÉRMICA DE PERLIWOOL®
EN FUNCIÓN DEL ESPESOR APLICADO.

ESPESOR PERLIWOOL® (en mm)	10	20	30	40	60	80	100	110	120
RESISTENCIA TÉRMICA R	0,13	0,26	0,38	0,51	0,77	1,03	1,28	1,41	1,54
TRANSMITANCIA TÉRMICA U	7,80	3,90	2,60	1,95	1,30	0,98	0,78	0,71	0,65

Ensayo nº: 18/15718-73

LABORATORIO ACREDITADO: APPLUS

NORMA UTILIZADA: UNE-EN 12667

ABSORCIÓN ACÚSTICA

La composición básica de **PERLIWOOL**® es la lana de roca, uno de los mejores absorbentes acústicos porosos del mercado.

PERLIWOOL® además de ser un producto usado como resistente al fuego ayuda al control de las reverberaciones generadas en una estancia reflejando un pequeño porcentaje del sonido incidente.

Con **PERLIWOOL**® tendrá ambientes más cómodos y saludables en estancias de alta concurrencia.

RESULTADOS. ENSAYO Nº 18/16416-237 realizado en APPLUS.

Medición de la absorción acústica de acuerdo a UNE-EN ISO 354

Muestra ensayada:

Proyectado de mortero con referencia comercial **PERLIWOOL**® de 30 mm de espesor nominal. Espesor medio medido de 35 mm.

Área de muestra, 5: 11,07 m² - 3,04 x 3,64 m

COEFICIENTE DE ABSORCIÓN ACÚSTICA αs						
Frecuencia (Hz)	αs					
100	0.11					
125	0.18					
160	0.25					
200	0.37					
250	0.49					
315	0.91					
400	0.86					
500	0.94					
630	1.00					
800	1.05					
1000	1.04					
1250	1.02					
1600	0.99					
2000	0.98					
2500	0.99					
3150	1.02					
4000	1.00					
5000	1.00					

COEFICIENTE DE ABSORCIÓN ACÚSTICA PRÁCTICO $lpha_{ m p}$							
Frecuencia (Hz)	$lpha_{p}$						
125	0.20						
250	0.50						
500	0.95						
1000	1.00						
2000	1.00						
4000	1.00						

COEFICIENTE DE ABSORCIÓN SONORA PONDERADO (EN ISO 11654)

 CL_{W} = 0,80 (H)

1.1																			
1.0											0	0				0		<u> </u>	
0.9								9											
0.8							7												
0.7						-													
0.6						\not													
0.5																			
0.4																			
0.3																			
0.2		O																	
0.1		10	0		0	10	0	0		0	0		0	0	0		0		Hz
	100	125	160	200	250	315	400	200	93	800	1000	125(1600	2000	2500	3150	4000	2000	
											\sim								
1								9											
0.9																			
0.8																			
0.7																<u> </u>			
0.6																			
0.5																			
0.4																			
0.3	_																		
0.2													oef. <i>i</i> ef. De						
0.1											_	r(t	:i. D	εsμι.					

Clases de absorción acústica Según α _W (En ISO 11654)
A (>0,85)
B (0,80 a 0,85)
C (0,60 a 0,75)

D (0,30 a 0,55)

E (0,15 a 0,25)

Sin clasificar (<0,15)

250

500

Se recomienda firmemente utilizar el índice de evaluación único "Coeficiente de absorción sonora ponderado" (α_w) en combinación con la curva del coeficiente de absorción acústica completa.

RESULTADOS. ENSAYO Nº 18/16416-238 realizado en APPLUS.

Medición de la absorción acústica de acuerdo a UNE-EN ISO 354

Muestra ensayada:

Proyectado de mortero con referencia comercial **PERLIWOOL**° de 50 mm de espesor nominal. Espesor medio medido de 54 mm.

Área de muestra, 5: 11,34 m² - 3,09 x 3,67 m

COEFICIENTE DE ABSORCIÓN ACÚSTICA $lpha_{ extsf{S}}$							
Frecuencia (Hz)	α_{S}						
100	0.23						
125	0.30						
160	0.45						
200	0.63						
250	0.80						
315	0.69						
400	1.01						
500	1.00						
630	1.02						
800	0.98						
1000	1.02						
1250	1.00						
1600	1.05						
2000	1.02						
2500	1.05						
3150	1.04						
4000	1.02						
5000	1.07						

COEFICIENTE DE ABSORCIÓN ACÚSTICA PRÁCTICO $lpha_{ t p}$							
Frecuencia (Hz)	$lpha_{p}$						
125	0.30						
250	0.80						
500	1.00						
1000	1.00						
2000	1.00						
4000	1.00						

COEFICIENTE DE ABSORCIÓN SONORA PONDERADO (EN ISO 11654)

 $\alpha_{\rm W}$ = 1,00 (H)

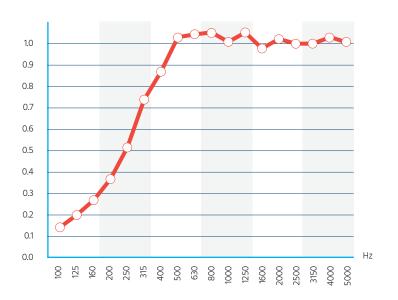
11																			
1.1															$\overline{\wedge}$			$\overline{\bigcirc}$	
1.0							P	0	0	0	0	0		O		<u> </u>			
0.9						d													
0.8					P														
0.7	H																		
0.6				P															
0.5																			
0.4			1																
0.3																			
0.2	đ																		
0.1																			Hz
0.1	100	125	160	200	250	315	400	200	630	800	1000	1250	1600	2000	2500	3150	4000	2000	
1																			

CLASES DE ABSORCIÓN ACÚSTICA SEGÚN $lpha_{W}$ (EN ISO 11654)							
A (>0,85)							
B (0,80 a 0,85)							
C (0,60 a 0,75)							
D (0,30 a 0,55)							
E (0,15 a 0,25)							

Sin clasificar (<0,15)

Se recomienda firmemente utilizar el índice de evaluación único "Coeficiente de absorción sonora ponderado" (α_w) en combinación con la curva del coeficiente de absorción acústica completa.

RESULTADOS. ENSAYO Nº 18/16416-239 realizado en APPLUS.


Medición de la absorción acústica de acuerdo a ASTM C423-09a

Muestra ensayada:

Proyectado de mortero con referencia comercial $PERLIWOOL^{\circ}$ de 30 mm de espesor nominal. Espesor medio medido de 35 mm.

Área de muestra, 5: 7,36 m² - 2,42 x 3,04 m

COEFICIENTE DE ABSORCIÓN ACÚSTICA $lpha$								
Frecuencia (Hz)	α							
100	0.13							
125	0.20							
160	0.28							
200	0.38							
250	0.51							
315	0.73							
400	0.88							
500	1.01							
630	1.03							
800	1.04							
1000	1.01							
1250	1.03							
1600	0.99							
2000	1.02							
2500	1.00							
3150	1.00							
4000	1.02							
5000	1.01							
3300								

ABSORCIÓN ACÚSTICA PROMEDIO

SAA = 0,89

COEFICIENTE DE REDUCCIÓN SONORA

NRC = 0,90

RESULTADOS. ENSAYO Nº 18/16416-240 realizado en APPLUS.

Medición de la absorción acústica de acuerdo a ASTM C423-09a

Muestra ensayada:

Proyectado de mortero con referencia comercial **PERLIWOOL**® de 50 mm de espesor nominal. Espesor medio medido de 54 mm.

Área de muestra, 5: 7,60 m² - 2,46 x 3,09 m

COEFICIENTE DE ABSORCIÓN ACÚSTICA $lpha$								
Frecuencia (Hz)	$\alpha_{ t S}$							
100	0.24							
125	0.41							
160	0.52							
200	0.66							
250	0.84							
315	0.90							
400	0.98							
500	1.07							
630	1.03							
800	1.01							
1000	0.98							
1250	1.03							
1600	1.02							
2000	1.03							
2500	1.05							
3150	1.06							
4000	1.07							
5000	1.09							

ABSORCIÓN ACÚSTICA PROMEDIO

SAA = 0,97

COEFICIENTE DE REDUCCIÓN SONORA

NRC = 1,00

CONTROL DE CONDENSACIÓN DE AGUA

Gracias al aislamiento térmico que se obtiene con **PERLIWOOL**° podemos conseguir que no se alcance el punto de rocío en las diferentes estancias, evitándose de esta forma las posibles condensaciones superficiales. Para evitar las posibles condensaciones intersticiales, se aconseja el uso de **PERLIWOOL**° con barreras de vapor ignífugas.

Dado que **PERLIWOOL**® es un producto al que no le afecta el moho, este puede aplicarse en zonas donde las condiciones son idóneas para la aparición de este tipo de hongos.

ACABADOS PERLIWOOL® ENLUCIDO - END LIQUID

PERLIWOOL® un acabado original

PERLIWOOL® PERMITE GRAN CANTIDAD DE ACABADOS ADECUÁNDOSE A LOS DIFERENTES GUSTOS ESTÉTICOS. LOS ACABADOS MÁS DESTACADOS SON:

Acabados con **PERLIWOOL**® visto:

- Acabado clásico o rústico: Una vez proyectado PERLIWOOL® forma una capa continua rugosa, quedando un acabado rústico.
- Acabado alisado: Estando PERLIWOOL® húmedo, éste permite que sea chafado y moldeado a voluntad, quedando un acabado alisado y original.
- Acabado con END LIQUID: END LIQUID es un producto líquido de acabado el cual endurece el mortero. END LIQUID es ignífugo, lo que le hace idóneo para aplicaciones con una Resistencia al Fuego requerida.

Acabados con PERLIWOOL® no visto:

PERLIWOOL® puede ser recubierto con casi todos los sistemas de tabiquería seca y húmeda así como cualquier sistema de falso techo existentes en el mercado, sistemas de instalación independiente al propio del mortero.

MINERAL FIBER SOLUTIONS, S.L.

T +34 930 212 544 • **FAX** +34 937 115 078 mineralfsol@mineralfsol.com

MINERALFSOL.COM

